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SUMMARY 

The boundary integral formulation and boundary element method are extended to include lifting flow 
problems. This involves inclusion of a branch cut in the flow field and imposition of a Kutta condition 
to determine the circulation, r. Additional boundary integral contributions arise from the cut surface. 
Techniques for calculating r are developed and we treat, in particular, a superposition procedure which 
permits very efficient computation. Numerical results are presented for an NACA0012 aerofoil at 
several angles of attack. 
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INTRODUCTION 

Integral equation techniques have been extensively used in computing incompressible 
potential flows, principally by means of panel methods. These methods are based upon ideas 
of superposition of potentials due to, for example, source and doublet distributions.’ A 
different type of boundary integral equation can be obtained by applying an appropriate 
Green’s formula to recast the linear potential equation in the interior as an equation 
involving integrals on the boundary.2 A finite element expansion for the solution field may 
then be introduced on a discretization of the boundary and an approximate solution of the 
boundary integral equation thereby obtained. This procedure has been termed the boundary 
element m e t h ~ d . ” ~  The ideas have been developed for several classes of problems and 
studied in particular for linear potential flows governed by Laplace’s Many of 
the applications of the boundary element method have concerned porous flow problems and 
similar problems in water  resource^.^*^ Studies of potential aerodynamic flows with boundary 
elements have been limited to non-lifting profiles and, as such, represent simply an 
application of previously well-developed ideas.’ 

The boundary element method and panel method have some strong similarities, principally 
due to their use of boundary integral relations and the classical ideas of potential theory. 
There are, however, some major conceptual distinctions; the panel method is based upon 
superposition using for instance sources, doublets or vortices with solution determined for 
example from the discrete satisfaction of boundary flux conditions; in the boundary element 
method we use a finite element expansion and a discrete approximation of the boundary 
integral equation. 

Standard finite element variational methods have been previously developed and applied 
to lifting aerofoil Our purpose here is to extend the boundary element method 
to treat these lifting flows. To achieve this, we shall introduce a ‘branch cut’ to develop both 
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a direct integral formulation in which circulation I' is obtained iteratively and also a 
superposition formulation. The latter approach leads to a particularly efficient algorithm 
which has been applied in numerical studies of an NACA0012 aerofoil at angle of attack. 

METHOD 
1 .  Flow problem 

Laplace's equation? 

where 4 is the potential for flow past an aerofoil in the flow domain R. The associated 
boundary conditions are that there be no flow through the aerofoil boundary aR,, 

We shall limit the treatment here to incompressible two-dimensional flows governed by 

A 4 = 0  ( 1) 

and that in the far field 
v4 --turn as r 2 = x 2 + y 2 - + m  

where U, is the specified uniform flow at infinity. 
On a remote far-field boundary ailR, we can approximate (3)  by 

a4 -=U,.n an ondRf 

(3)  

(4) 

where n is the unit outward normal from aR,. 
Finally, the unknown circulation r is to be determined from the Kutta condition which 

asserts that the flow should leave smoothly from the trailing edge. In turn, this is equivalent 
to  the requirement that the trailing edge be a stagnation point in the flow.'* 

u = 0 at the trailing edge (xE, y E )  ( 5 )  

If we consider any simple closed contour (e enclosing the aerofoil, then the circulation r is 
defined by 

where u is the velocity and P, Q are a pair of adjacent points on either side of a branch cut 
from the aerofoil (Figure 1). The branch cut consists of the pair of slit surfaces shown and 
designated aR,+ and aR,- for upper and lower surfaces, respectively. 

Hence, across the slit surface we have 

[+B=I' onaR, (7) 

and the velocity is continuous, so 

where [-j denotes the jump across the branch cut. Both relations (7) and (8) will be 
particularly important in our boundary integral formulation for the lifting aerofoil problem. 

i In continuing studies we have recently extended the approach to subcritical compressible flows and the method is 
currently being implemented and tested. 
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Figure 1. Row domain SZ showing aerofoil, branch cut and far-field boundaries a&, ans+, an, and associated 
boundary conditions 

2. Boundary integral equation 

Let aSZ be the total boundary comprised of aerofoil, far-field boundary and both slit 
surfaces: aSZ = an, U dSZ, U aft,+ U aa2,-. The boundary integral equation is derived from 
Green's third identity for the Laplacian 

Select x as the fundamental solution for the Laplacian 

Ax = S(X - J) (10) 

In two dimensions x is the familiar potential solution for a point source 

1 
2%- 

x(x; J) = - In r 

where r = Ix-t;l and 5 is a point in the interior of SZ. 
Using (1) and (10) in (9) and simplifying, we obtain4 

Where we have denoted ~ ( x ( s ) )  as Cp(s), etc. In deriving (12) we have employed the 
symmetry of x to interchange x and J for convenience and have then used the Dirac delta 
property to write 
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where 
p (x) = 8127r t 14) 

and 8 is the interior angle at x. (If x is in the interior R of the flow field, then 8 = 27r and 
p = 1; if x is on the boundary allZ where there is a continuously turning tangent, then 8 = 7r 

and p = 112, etc. 
Let g denote the integrand on the right in (12) so that here we have for a point x on 8 0 ,  

and the lifting aerofoil, 

P(r)Cp(x)=f ana g d s + f  anf g d s + j  an,, g d s + j  an,- gds  

(15) 

Considering each of the integrals in (15), we have: on the aerofoil, since aQ,/an = 0 by (2), 

= I ,  + I, + Is+ + I,- 

On the far-field boundary, since = U, . n, 

Finally, combining the integrals on the cut: 

where we have used the direction of integration on 
the result in (18). 

and relations (7) and (8) to obtain 

Combining (16)-( 18) in the boundary integral equation (15), 

Since x is known we can transpose terms to rewrite (19) as 

If in addition we use a far-field asymptotic approximation Q,f for Q, on asl, the integral 
equation simplifies further to 

so that the unknown solution Cp enters only for x on the aerofoil an,. 
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The circulation r enters as an unknown in the integral equation. We can seek to find r 
iteratively by initially setting I? = 0, solving, and then using the Kutta condition to adjust I?. 
That is, the initial guess I.'') is given and we solve for #(I) and use ( 5 )  to correct r(O) to r('), 
and so on. Subsequently in Section 4 we describe an alternative superposition method for 
linear lifting potential flows. The iterative method indicated here has also been used in 
standard finite element methods and in the extension of the present boundary element 
method to compressible lifting flows. 

3. Boundary element method 

Let us consider the formulation (21). Discretize ana to  n elements aRe each having 
N, nodal degrees of freedom. At  the trailing edge we require a pair of points: P for the 
upper surface element and Q for the lower surface element. At this pair-point we have 

4+-4-=r (22) 

A similar relation holds for the corresponding pair of points at the branch cut on aR,. 
We shall consider isoparametric elements so that the number of degrees of freedom Ne 

describing the element shape (linear, quadratic, etc.) agree with the number defining the 
local approximation of 6, on an:. The finite element approximation has the form 

Substituting in (20), we obtain 

Now consider the collocation of (24) at points x=xi  on dR,. Note that the solution values 
and normal derivative on the cut, although unknown, do not enter the boundary element 
approximations except in the form of the circulation term in (24). There are nNe nodal 
values of 4 on the aerofoil. We have one relation (22) and can obtain the remaining 
equations defining the boundary element system by collocating (24) at points in the boundary 
elements. For example, with linear elements we may collocate at the element nodes. 

4. Superposition (spl i t )  approach 

We now consider a different formulation in which the original solution is split as the 
superposition of two potentials satisfying slightly different problems derived from (1)-(8).100." 
This leads us to  develop a boundary element method that is particularly efficient and which is 
implemented in subsequent numerical studies. 

Let us express the potential solution 6, as a superposition of potentials 2, and w, in the 
form 

where r is the unknown circulation. It follows from the previous discussion (see Figure 1) 
that 

[6,] = r[u]+(Iw] = r across aR, (26) 

4=rV-tw (25) 

whence we can set 
[v] = 1 and [w] = 0 across aR, 
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in the subsidiary problems. Similarly, [acf,/an] = 0 on aR, implies 

[av/anJJ = [aw/an] = 0 on aR, 

From the potential flow equation A+ = 0, we have 

Av=O and Aw=O i n 0  

Finally, the boundary conditions on aQ, and aRf imply 

and 
d V  

an 
-=O,  

The boundary-value problems for v and 

Av=O i n R  

a W  
-=U,.n an onaRf 

w are, respectively, 

and 

Aw=O i n R  I 
a W  a W  
-=0 an on aR,, -=U,.n an on aR, (33) 

[w]=O, Baw/an]=O on aR, 
The boundary integral equation for v in (32) is obtained following the earlier procedure (see 
(20)) to be 

ax p(n)o(x)-l a,, v-ds- an I, gds 
and, similarly, for w in (33), 

p(x)w(a)-l  w-dds- ax = - xU,.nds 
an, an k 

(34) 

(35) 

If we introduce the asymptotic far-field approximation cf,f for cf, (as in (21)), we obtain 
asymptotic boundary data on aQf for vf and wf from (25) in the form of a uniform flow and 
uniform circulation. (Recall that the complex velocity for uniform flow past a unit cylinder 
with circulation I' is 

(36) 
i r  

F ( z )  = IU,/ ( z  +;)-=log z,  2 = x + i y  

and can be used to define the asymptotic far-field approximation). In this case we can 
introduce of and wf on aRf into (34) and (35) to obtain analogous integral equations to that 
in (21). 

The boundary element equations are formed as before. A discretization of the aerofoil 
boundary ail, is introduced (ai l ,  and in (34)-(35) are used with IJ and w on aRf 
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unspecified). The finite element expansions for v and w on an element aR" are defined by 

where +T are obtained from local element basis functions {&} for i = 1,2, . . . , N, defined on 
the master element &= [-1,1], and where afle is defined by an isoparametric map of the 
form 

x = c X J d i ( t ) >  Y = c YJ4@3, tEE-1711. (38) 
Ne N, 

J - 1  J = 1  

and N, is the number of degrees of freedom (nodes) for the element. 

wf, we obtain 
Substituting (37) in (34) and (35) and using the asymptotic far-field approximations vf and 

and 

Collocating (39) at points {xi}, i = 1,2, .  . . , N 

This, together with the condition [vJJ= 1 at the trailing edge pair of points, yields the linear 
algebraic boundary element system for v. 

A similar system is obtained from (40) 

and system solution determines w. 
Since we have used the same discretization and element basis for v and w the coefficient 

matrices in the two boundary element systems are identical. This implies that we may 
decompose the coefficient matrix A in (41) to the product LU where L and U are the usual 
lower and upper triangular matrices of LU decomposition in Gaussian elimination; L and U 
are stored, and the system solution for both v and w reduces to inexpensive forward and 
backward substitution sweeps on their respective right hand sides. 

The final step is the determination of r to reconstruct 4 in (25). From (25) we have 
4 = T v + w ,  so that the velocity components are 

u , = ~ x = r ~ x + w x ,  uz=4y = r u y + w y  (43) 

where = &$lax, etc. 

the flow, we get on examining for instance the x-component of velocity 
Imposing the Kutta condition by requiring that the trailing edge be a stagnation point of 

(44) -wx r = __ at the trailing edge (x, y)= 
VX 

Hence the circulation r may be calculated by (44) from the computed boundary element 
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solutions for u and w and these results determine (b in (25). An accurate estimate of r from 
(44) will be obtained if the derivatives w, and u, have been determined accurately at the 
trailing edge. However, accurate results at this point are computationally difficult to achieve 
and would require a very fine graded mesh in this region. 

We can determine r alternatively by requiring that the flow leave smoothly from the 
trailing edge. Let 1, 2 represent the pair-point at the trailing edge with 1 corresponding to 
the upper surface element and 2 the lower surface element. From the potentials u and w we 
calculate the tangential velocities at 1 and 2 and denote them by VI, V2 and Wl, W,. Then, 
for a smooth flow from the trailing edge, the upper surface velocity must equal the lower so 
that 

whence 
rvl+ wl=rv2+ w, (45) 

which can also be deduced from the condition above that the trailing edge be a 
stagnation point of the flow. The section lift coefficient Ce, can be shown to be 

eel = 2r 
5. Several angles of attack 

(47) 

In the subsequent numerical studies we shall compute the flow solution for several angles 
of attack a. The previous superposition approach can be modified slightly to yield a scheme 
for computing these flow solutions very efficiently. Recall the form of the split boundary- 
value problems for d, = r u  + w in (32) and (33). The uniform incident flow field U, enters the 
problem data for w as 

-=U,.n C3W o n & &  
an 

Thus if U, is changed to correspond to a different angle of attack a, the solution for u 
remains unchanged and the solution for w apparently requires an additional substitution 
sweep since the right-side vector in the boundary element system is changed with U,. 

In fact one can achieve still greater efficiency by noting that U, = IU,( (cos ael +sin ae,) 
where el, e2 are unit base vectors. This implies that the term on the right in (35) can be split 
to 

XU,. n ds = (U,I (cos Xnl ds +sin xn2 ds) (49) k 
where ntl and n2 are the components of the unit outward normal to asl,. Let us denote them 
by w, and w,, the parts of w corresponding to incident flows 1U,I e,  and IU,I e2, respectively; 
that is, the two flow fields corresponding to a = 0 and a = 7112 in (49). Then, for given a, 
w = w, cos a + w, sin a and the potential in (25) becomes: 

(b = r e v  + w, cos a + w, sin a (50) 

where I?, indicates the dependence of r on incident angle a. 
Thus, we can solve separate boundary integral equations for u, w, and w, and reconstruct 

d, according to (50). In fact, w, and w, are obtained as the solution of (35) and hence (41) for 
incident flows with velocity )U,( el and IU,I e2. Since the differences in the boundary element 
systems arise only in the right-side vectors we can again use the factored matrices L and U, 
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repetitively and solution for w, and w, simplifies to two successive forward and backward 
substitution sweeps. The circulation r is again obtained from a relation corresponding to 
(46). Finally, having obtained v,  w, and w, we can directly determine the flow field for any 
angle of incidence a by means of ( S O )  and the Kutta condition for r. 

NUMERICAL RESULTS 

The foregoing boundary element method for lifting aerofoil calculations is now examined in 
a series of numerical studies for an NACA0012 aerofoil with remote uniform incident flow 
U, at a prescribed angle a! to the chord of the aerofoil. A non-uniform graded mesh of linear 
elements with 117 nodes on the aerofoil is employed. The discretization for the aerofoil 
is indicated in Figure 2 with an expanded detail of the mesh system at the leading edge in 
Figure 3. 

In Figure 4 the pressure coefficient (ep on the upper and lower surfaces of the aerofoil is 
plotted for incident flows at angles a = 0", 4", 6" and 8". The circulation is calculated using 
(46) and lift coefficient from (47). Lift coefficient (el is plotted against angle of attack a! from 
a = 0" to a! = 20" and compared with experimental results'* in Figure 5 .  Good agreement is 
indicated at low and moderate angle of attack. Beyond a = 14" the flow is strongly separated 
so that the inviscid potential flow assumptions in the mathematical model are no longer valid 
and the results differ. 

I I I I I t 

6 -0.4 - 0.2 0.2 0.4 0.6 CHORS LINE 

Figure 2. Discretization of linear boundary elements approximating NACA 0012 aerofoil boundary an, 
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Figure 3. Petail of graded boundary element mesh at leading edge 
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Figure 4. Plots of pressure coefficient V, with respect to chord length for incident uniform flow at angles a =o", 4", 
6", and 8" (0, A, 0, El) 
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-. . Abbott and Doenhoff 
----: B.E.M. Solution 

Figure 5. Comparison of computed lift coefficient 4, with experimental results 

CONCLUDING REMARKS 

In this study, we have developed an extension of the boundary element method for 
incompressible potential flows to the case of flows with circulation, and presented numerical 
results for a lifting aerofoil. Alternative techniques for determining the circulation have been 
briefly described and a superposition strategy used in the computations. In continuing studies 
the method is being extended further to consider subcritical compressible lifting flows. 

The method, although qualitatively similar to well known panel methods is conceptually 
distinct in that it is not directly based on a source, sink or vortex superposition principle. In 
some instances, one may show equivalence between the boundary element method and panel 
method but this is not true in general. 
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